Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus.
نویسندگان
چکیده
The globus pallidus (GP) contains abundant GABAergic synapses and GABA(B) receptors. To investigate whether synaptically released GABA can activate pre- and postsynaptic GABA(B) receptors in the GP, physiological recordings were performed using rat brain slice preparations. Cell-attached recordings from GABA(A) antagonist-treated preparations revealed that repetitive local stimulation induced a GABA(B) antagonist-sensitive pause in spontaneous firings of GP neurons. Whole cell recordings revealed that the repetitive stimulation evoked fast excitatory postsynaptic potentials followed by a slow inhibitory postsynaptic potential (IPSP) in GP neurons. The slow IPSP was insensitive to a GABA(A) receptor antagonist, increased in amplitude with the application of ionotropic glutamate receptor antagonists, and was suppressed by the GABA(B) antagonist CGP55845. The reversal potential of the slow IPSP was close to the potassium equilibrium potential. These results suggest that synaptically released GABA activated postsynaptic GABA(B) receptors and induced the pause and the slow IPSP. On the other hand, in the neurons that were treated to block postsynaptic GABA(B) responses, CGP55845 increased the amplitudes of repetitive local stimulation-induced GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) but not the ionotropic glutamate-mediated excitatory postsynaptic currents. Moreover, the GABA(B) receptor specific agonist baclofen reduced the frequency of miniature IPSCs without altering their amplitude distributions. These results suggest that synaptically released GABA also activated presynaptic GABA(B) autoreceptors, resulting in decreased GABA release in the GP. Together, we infer that both pre- and postsynaptic GABA(B) receptors may play crucial roles in the control of GP neuronal activity.
منابع مشابه
Subcellular localization of GABAB receptor subunits in rat globus pallidus.
The inhibitory amino acid gamma-aminobutyric acid (GABA) is the major neurotransmitter in the globus pallidus. Although electrophysiological studies have indicated that functional GABA(B) receptors exist in rat globus pallidus, the subcellular localization of GABA(B) receptor subunits and their spatial relationship to glutamatergic and GABAergic synapses are unknown. Here, we use pre-embedding ...
متن کاملGABAergic neurotransmission in globus pallidus and its involvement in neurologic disorders.
The globus pallidus occupies a critical position in the 'indirect' pathway of the basal ganglia and, as such, plays an important role in the modulation of movement. In recent years, the importance of the globus pallidus in the normal and malfunctioned basal ganglia is emerging. However, the function and operation of various transmitter systems in this nucleus are largely unknown. GABA is the ma...
متن کاملEndogenous GABA activates small-conductance K+ channels underlying slow IPSCs in rat hippocampal neurons.
The objective of this study was to determine the properties of K+ channels activated by endogenously released trasmitter under synaptic conditions. First, the levels of gamma-aminobutyric acid (GABA) were depleted in hippocampal nerve endings to establish the relative contribution of endogenously released GABA to the activation of GABA(B) receptors mediating slow inhibitory postsynaptic current...
متن کاملRepetitive activation of glutamatergic inputs evokes a long-lasting excitation in rat globus pallidus neurons in vitro.
External globus pallidus (GPe) neurons express abundant metabotropic glutamate receptor 1 (mGluR1) in their somata and dendrites and receive glutamatergic inputs mainly from the subthalamic nucleus. We investigated whether synaptically released glutamate could activate mGluR1s using whole cell and cell-attached recordings in rat brain slice preparations. Repetitive internal capsule stimulation ...
متن کاملDynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat.
The opioids contained in striato-pallidal axons are thought to play a significant role in motor control. We examined post- and presynaptic effects of the kappa (kappa)-receptor agonist dynorphin A (1-13) (DYN13) on the globus pallidus (GP) neurons in rat brain slice preparations using the whole cell recording method. DYN13 hyperpolarized and decreased the input resistance of approximately one-q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2005